If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+39x+9=0
a = 7; b = 39; c = +9;
Δ = b2-4ac
Δ = 392-4·7·9
Δ = 1269
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1269}=\sqrt{9*141}=\sqrt{9}*\sqrt{141}=3\sqrt{141}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(39)-3\sqrt{141}}{2*7}=\frac{-39-3\sqrt{141}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(39)+3\sqrt{141}}{2*7}=\frac{-39+3\sqrt{141}}{14} $
| 802=23k+20 | | 4h+49=13 | | Y=b-24.8 | | (3x+2)=53 | | 2x-4(x-3)=-2 | | 2/5*10=x | | q/8=25 | | 4w-9.2=18.8 | | a=-4000+39000 | | k-6.7=9 | | 2(7x+9)=4 | | 4(2b+2)-3=21 | | 5x+13-3x=65 | | 7m=51/5 | | 13=-6(1n+3)-5(1n+7) | | -9+2t=-11 | | x2+3x–48=0 | | |5x-4|=13 | | 7=9.8x-56 | | q/5+5=8 | | 9p-8p=11 | | 9=7-4y | | −4x–8=2−(2x-2) | | 2 | | 2 | | 2 | | 150x+3000=120x-300 | | 27-x=x+7 | | m/16-92=-91 | | 17/41=34/d | | 90x+6x+4X=180 | | y2+4y=2(3y−6−y)+y2 |